Yu Residence Addition

Structural Calculations

9004 S.E. 60th Street Mercer Island, WA 98040 King County

Sidesway Project No. 22076.01

Prepared By:

09/14/22

TABLE OF CONTENTS

DESCRIPTION		PAGE NO.
Project Summary		
Gravity System	Design Loads Roof Framing & Foundation Design	1.01 1.02
Lateral System	Seismic & Wind Loads Lateral Load Distribution Shear Wall, Diaphragm & Chord Design	2.01 - 2.05 2.06 2.07

Project Description

Sidesway Engineering was retained by the homeowner to perform analysis and design as necessary to obtain a building permit for the proposed single-story addition to the existing single-family residence located at 9004 S.E. 60th Street on Mercer Island.

The addition converts the existing garage into livable space and adds an approximately 564ft² garage at the southwest corner of the residence. The roof will be conventionally wood framed with premanufactured trusses spanning between exterior stud walls. The walls bear atop a continuous exterior footing at frost depth with an interior slab on grade. The existing garage floor will be raised on furring strips and sheathed to create an 8' ceiling height. The lateral force resisting system consists of a sheathed roof diaphragm spanning to various wood stud shear walls around the perimeter of the house.

All existing framing and dimensions were provided to us from the PFW Architecture plans or were obtained during a site visit performed by our firm.

Scope of Work

Provide gravity and lateral calculations for the proposed garage addition as required to obtain a building permit. Redline structural framing requirements onto the architectural plan set and provide structural notes and typical framing details as necessary to obtain a building permit.

Design Criteria

2018 International Building Code (IBC) 2018 International Existing Building Code (IEBC) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures Applicable Material Reference Standards (ACI, AISC, NDS)

This is a Risk Category II structure designed for the following loads:

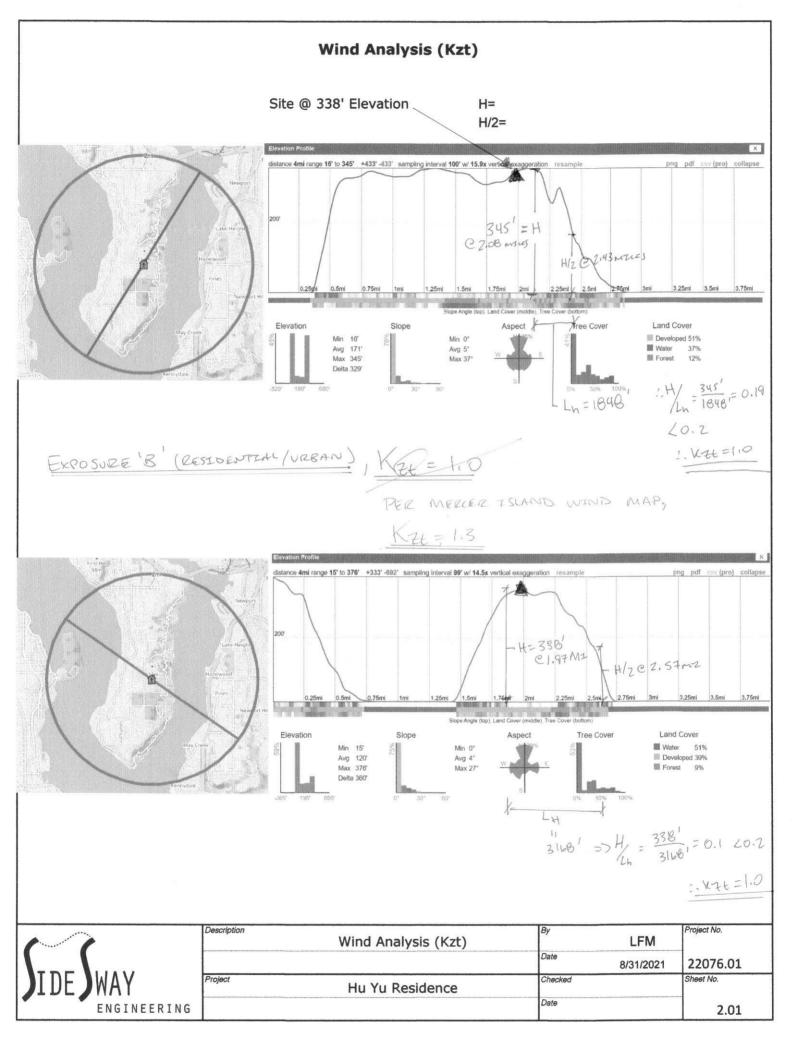
Dead Loads:	12psf (roof), 9psf (exterior/interior walls)
Snow Load:	25psf
Wind Load:	100mph, Exposure 'B', $K_{ZT} = 1.3$ (refer to wind loads)
Seismic Load:	R = 6.5 (wood s.w.), Site Class D, SDC D (refer to seismic loads)

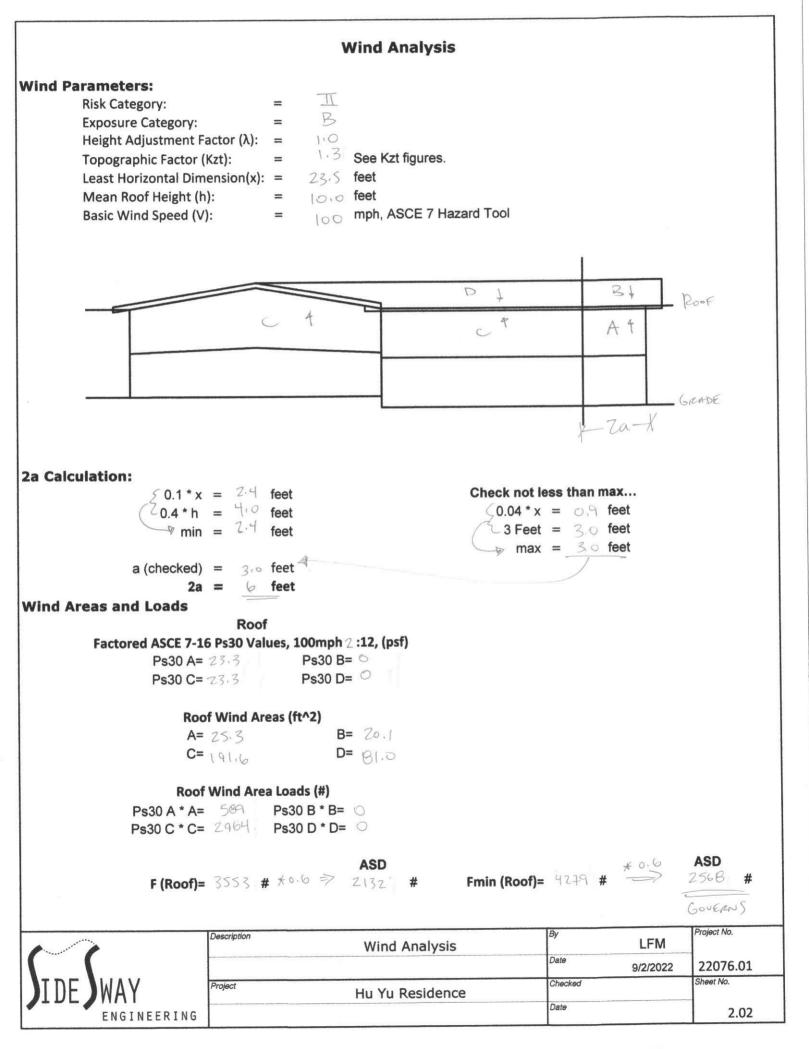
Project Summary

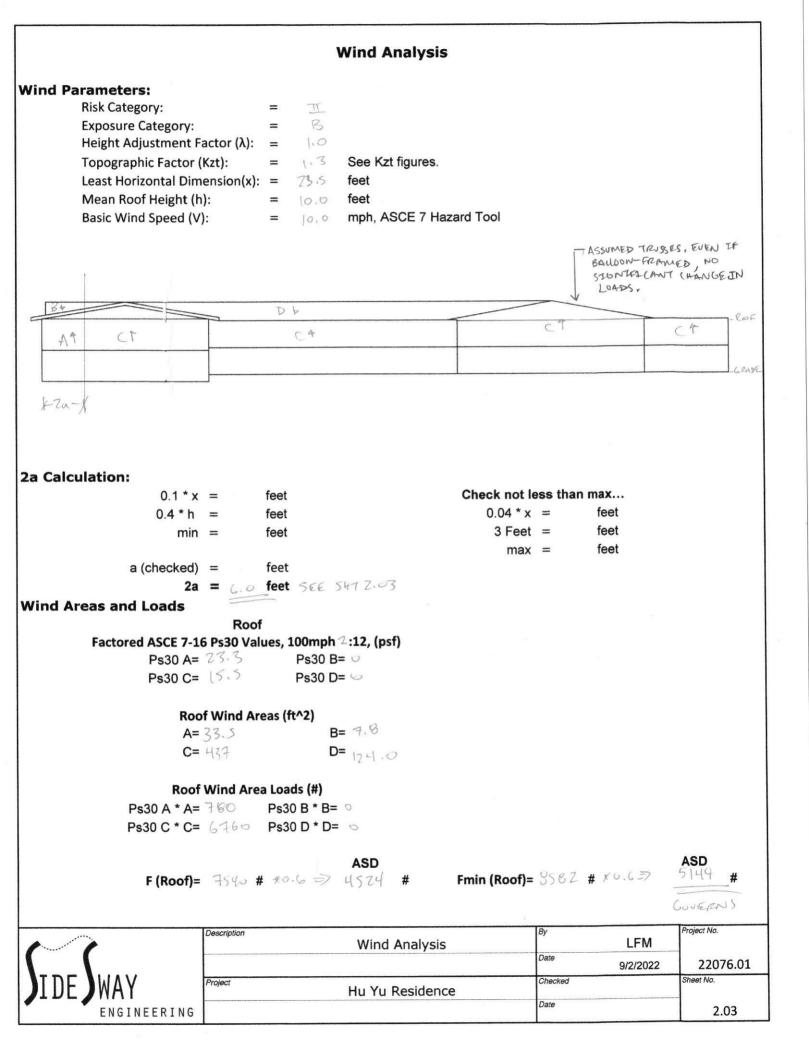
The proposed addition to the single-family residence as designed in the following calculations conforms to the 2018 IBC and IEBC. Refer to the calculations and the construction drawings for structural framing requirements.

Disclaimer

This calculation package is based on the documentation that was available to us. Sidesway Engineering did not perform a complete as-built to verify the accuracy of the provided data, and we should be contacted if there are any discrepancies with the assumptions contained within these calculations. We assume the structure has no known deterioration or damage that would adversely affect capacity.



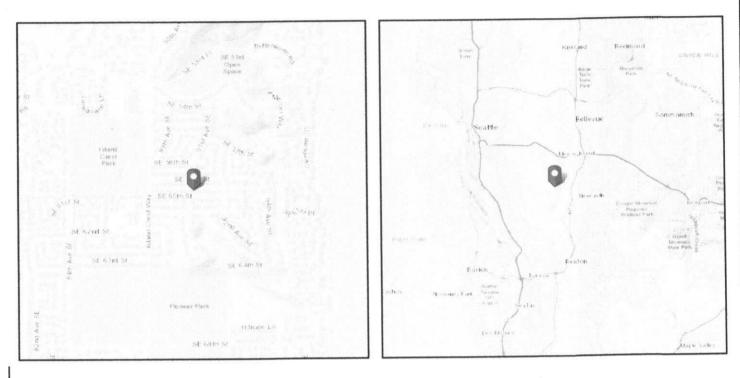

20305 87th Avenue W. Edmonds, WA 98026 (425) 673-4160


DESIGN LOADS					4
DEAD: ROOF:	1/2"SHEATHING FRANTING INSULATION MECH/ELEC CEIVING MISC.	2.0 3.0 1.0	IEXT WAUS 9 P	54	
SNOW: 25 PSF					
AlloWABLE SOTL BEA	EING: 1500 P	SF (ASSan	(60)		
Allower Ster Sere Et			25.22)		
SEISMIC DL	(21005)	6001-	WAUS BELOW	08-1705E	
SEISMIC DL	(3692714)	* (IZPSF T	JPSF) = 6 (\$64 # -	-OIC- ITYSF	
e la companya de la c					······ ··· ···························
a .					
					Drainet No
	Description	DEST	GN LOADS	By LIEM	Project No.
SIDE SWAY				Date 8-31-207	22076.01
	Project		0	Checked	Sheet No.
		HU YU	RESIDENCE	Date	1.0(
ENGINE	RING			Buto	

FRANTING
GARAGE HDR (16.75')

$$(J_{A_{1}}^{-1}, J_{A_{1}}^{-1}, J_{A_{2}}^{-1}, J_{A_{2}}^{-$$

ASCE 7 Hazards Report


Address: 9004 SE 60th St Mercer Island, Washington Soil Class: 98040

Standard: Risk Category: II D - Default (see

ASCE/SEI 7-16

Section 11.4.3)

Elevation: 336.35 ft (NAVD 88) Latitude: 47.549411 Longitude: -122.218576

Seismic

ite Soil Class: tesults:	D - Default (se	ee Section 11.4.3)			
S _s :	1.455	S _{D1} :	N/A		
S ₁ :	0.505	Τ _L :	6		
F _a :	1.2	PGA :	0.623		
F _v :	N/A	PGA M :	0.748		
S _{MS} :	1.746	F _{PGA} :	1.2		
S _{M1} :	N/A	l _e :	1		
S _{DS} :	1.164	C, :	1.391		
Ground motion hazard an	alysis may be required	See ASCE/SEI 7-16 S	Section 11.4.8.		
Data Accessed:	Thu Sep 01 2				
Date Source:	USGS Seism	<u>ic Design Maps</u>			
	Description			By LEM	Project No.
	Description	ASCE 7 Hazard Too	l Design Values	LFM	
				Date 10/12/22	
TTOP BLIANT	Project			Checked	Sheet No.
	110,001			1	2.04

MSFRS Seismic Loads

==	47.549411, -122.218576
=	II (ASCE 7-16, Table 1.5-1)
==	1.00 (ASCE 7-16, Table 1.5-2)
=	D (Per geotech, else per 11.4.3)
	1.164 (SEAC)
=	0.505
=	1.795
=	0.6043
=	D (ASCE 7-16, Table 11.6-1, -2)
=	6.5 (ASCE 7-16, Table 12.2-1)
=	2.5 (ASCE 7-16, Table 12.2-1)
=	4.0 (ASCE 7-16, Table 12.2-1)
=	$C_t h_n^x$ Ct = 0.02 (ASCE 7-16,
=	0.104 x= 0.75 Table 12.8-2)
k =	1 (ASCE 7-16, Section 12.8.3)
=	0.778759 (If 1.5Ts < Ta, see 11.4.8)
=	0.051 W
=	0.179 W <u>GOVERNS</u>
	0.895 W
	= = = = = = = = = = = = = = = = = = =


Vertical Distribution of Seismic Forces:

Diaphragm Level	DL (psf)	Area (ft ⁺)	w _{DL} (kips)	Story Ht. (ft)	w _i hi ^ĸ (k-ft)	w _x h _x ^κ Σw _i h _i ^κ	Force F _x (kips)	Sum F _x
Roof Framing	17	3692	62.8	9	565	1.00	7.87	7.87
2nd Framing	0	0	0.0	0	0	0.00	0.00	7.87
		Σ =	62.8		565	1.00	7.87	
Base Shear (ULT) = Base Shear (ASD) =		11.24 7.87						

Diaphragm Design Forces:

Diaphragm	Wi	ΣWi	Fi	ΣFi	Σ F _i * W _{px}	F _{px} (Min)	F _{px} (Max)	F _{px}
Level	(kips)	(kips)	(kips)	(kips)	ΣWi	$0.2S_{DS}Iw_{px}$	$0.4S_{\text{DS}}\text{Iw}_{\text{px}}$	Govern
Roof Framing	62.8	62.8	7.9	7.9	7.9	10.23	20.46	10.23
2nd Framing	0.0	62.8	0.0	7.9	0.0	0.00	0.00	0.00

~~	Description Seismic Design Loads	By	LFM	Project No.
		Date	9/1/2022	22076.01
DIDE WAY	Project Hu Yu Residence	Checked		Sheet No.
ENGINEERING		Date		2.0>

$$\frac{\sum_{k \in A} (k - k) \sum_{i \in A} (k - i) \sum_{i \in A$$

Strong-Tie

Anchor Designer™ Software

Version 3.0.7947.1

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.500 Effective Embedment depth, her (inch): 10.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes hmin (inch): 13.13 ceo (inch): 17.58 Cmin (inch): 1.75 Smin (inch): 3.00

Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 1/2"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508

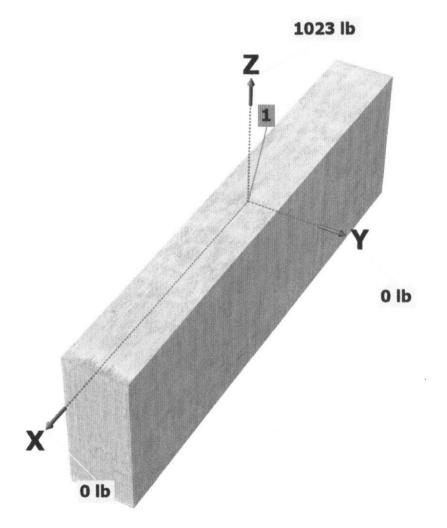
Company:	Sidesway Engineering	Date:	9/9/2022
Engineer:	LFM	Page:	1/5
Project:	Hu Yu Residence		
Address:			
Phone:			
E-mail:			

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 36.00 State: Cracked Compressive strength, f° (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Strong-Tie

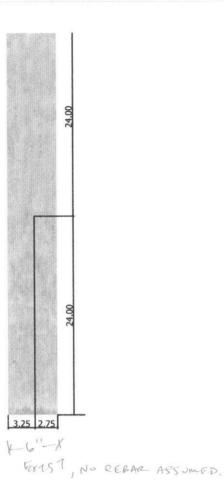

Anchor Designer™ Software Version 3.0.7947.1

Company:	Sidesway Engineering	Date:	9/9/2022
Engineer:	LFM	Page:	2/5
Project:	Hu Yu Residence		
Address:			
Phone:			
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: D.3.3.4.2 not applicable Ductility section for shear: D.3.3.5.2 not applicable Ω₀ factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Nua [Ib]: 1023 (ULTIMATE) FROM LINE (3) SHEAR WALLS (3' EXIST PIERS) SHT. 2.07 A Vuax [Ib]: 0 Vuay [Ib]: 0

<Figure 1>


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.1

Company:	Sidesway Engineering	Date:	9/9/2022
Engineer:	LFM	Page:	3/5
Project:	Hu Yu Residence		
Address:			
Phone:			
E-mail:			

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

SIMPSON Anchor Designer™	Company:	Sidesway Engineering	Date:	9/9/2022	
	ong Tie Software	Engineer:	LFM	Page:	4/5
Strong-Tie		Project:	Hu Yu Residence		
Version 3.0.7947.1	Address:				
8	8	Phone:			
	E-mail:				

3. Resulting Anchor Forces

Anchor	Tension load, Nua (Ib)	Shear load x, Vuex (lb)	Shear load y, V _{uay} (Ib)	Shear load combined, √(V _{uax})²+(V _{uay})² (lb)	
1	1023.0	0.0	0.0	0.0	
Sum	1023.0	0.0	0.0	0.0	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1023

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	ø	φNsa (Ib)
8235	0.75	6176

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

$N_b = K_c \lambda_a \sqrt{f'_c}$	hef ^{1.5} (Eq. D-6)							
Ko	la	fc (psi)	her (in)	N _b (lb)				
17.0	1.00	2500	10.000	26879				
$0.75\phi N_{cb} = 0$).75¢ (ANC / ANCO) Yed, N Yc, N Yop, NA	Ib (Sec. D.4.1 &	Eq. D-3)				
Anc (in ²)	ANco (in ²	Ca,min (in)	Wed, N	YO,N	$\Psi_{cp,N}$	N _b (lb)	φ	0.75 ØNcb (Ib)
180.00	900.00	2.75	0.755	1.00	1.000	26879	0.65	1979

6. Adhesive Strength of Anchor in Tension (Sec. D.5.5)

Tk, cr = Tk, crfsho	t-termKsatαN.seis							
Tk, or (psi)	fshort-term	K	sat	CIN. seis	Tk, or (psi)			
510	1.72	1.	00	1.00	877			
Nbe = λ a τorπ	daher(Eq. D-22)							
λa	tor (psi)	da (in)	her (in)	N _{ba} (lb)				
1.00	877	0.50	10.000	13779				
$0.75\phi N_a = 0.$	75¢ (Ana / Anao)	Yed, Na Ycp, Na Nba	(Sec. D.4.1 & E	q. D-18)				
A _{Na} (in ²)	ANao (in ²)	c _{Na} (in)	Ca,min (in)	¥ed, Na	$\Psi_{p,Na}$	Nao (lb)	φ	0.75 <i>¢N</i> e (lb)
80.46	179.82	6.70	2.75	0.823	1.000	13779	0.65	2474

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560,9000 Fax: 925.847.3871 www.strongtie.com

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.1

Company:	Sidesway Engineering	Date:	9/9/2022			
Engineer:	LFM	Page:	5/5			
Project:	Hu Yu Residence					
Address:						
Phone:						
E-mail:						

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (Ib)	Design Strength, øNn (Ib)	Ratio	Status
Steel	1023	6176	0.17	Pass
Concrete breakout	1023	1979	0.52	Pass (Governs)
Adhesive	1023	2474	0.41	Pass

SET-XP w/ 1/2"Ø F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria. => Forz Post-IN Stitute D

DTTZE

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.4.3 for tension need not be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.